

Enhancing AIRCRAFT SURVIVABILITY a Vulnerability Perspective

COMPOSITE STRUCTURE DESIGNS: LESS VULNERABLE, MORE AFFORDABLE

Bill Baron
Air Force Research Laboratory
Jamie Childress
Boeing Defense and Space
October 23 1997

Design for Affordability

AFFORDABILITY = f{LOW COST + PERFORMANCE}

- Survivability is a key component of performance
- Aircraft Lethality is improved through the development of survivable structure
- Structure is damaged in almost all ballistic events
- Vulnerability must be considered upfront in an aircraft development program
 - Design space is fixed early; limiting future solutions if the design does not meet the Live Fire Law requirements
 - Retrofit of primary structure is not an affordable option
 - Vulnerability reduction features can be exploited efficiently

Hydraulic Ram Threat

Hydraulic Ram is the critical design condition for structure

Detonation & fragmentation of HEI

Recent Experience

- Titanium spars in F-22 wing required to meet Live Fire requirements
- F-22 Wing Box Total Weight = 3130 lbs per Ship Set
- Increased Weight of Titanium Spars,
 Additional Fasteners, and Ribs = 120
 lbs per Ship Set
- 120/3130 = 4% Weight Increase Due to Hydrodynamic Ram

Increased cost and weight of the survivable structural system

Survivable Composite Structure Myth or Reality?

Current Design Practice

- Apply metallic design approach
- Mechanical fasteners to provide containment
- Use toughened material matrix
- Use parasitic materials to disrupt coupling

COMPOSTIES PERCEIVED TO BE LESS SURVIVABLE

Design for Affordable Composite Structure

- Tailor fiber architecture in unitized designs for robust joints
- React hydraulic ram pressures in the composite fibers
- Establish zones of controlled failure through stiffness tailoring
- Design to establish a pressure impedance mis-match

Conventional Failure Modes

- Joints are the "achilles heel" of the structural system
- Bolt pull-through allows panel separation
- Pressures fully coupled between bays

23mm API; Bolted Composite Panel C-Scan

Unitized Composite Design

- Web plies wrap around the cell to form the inner moldline
- Testing conducted under fully simulated combat conditions
 - Structural bending load, 23 HEI, Hydraulic Ram & Airflow

Results of Testing 23mm HEI

LOWER COST & LOWER WEIGHT ALL COMPOSITE DESIGN DEMONSTRATED IMPROVEMENT IN SURVIVABILITY

- CONVENTIONAL BASELINE STRUCTURE
- METALLIC SUBSTRUCTURE & COMPOSITE SKIN
- EXTENSIVE MULTIBAY DAMAGE

- COCURED COMPOSITE DESIGN
- CELLULAR DESIGN CONFIGURATION
- ZPINNED-FASTENERLESS LOWER SKIN
- CONTROLLED MEMBRANE TENSION FAILURE MODE

CONCEPT SCALE-UP

- Wrap Composite Fabric Around Cell Tooling
- Assemble Cells
- Apply Skin to Assembly
- Z-Pin "Spars" to Skin (Along Cell Joint Line)
- Ultrasonic Z-Pinning Approximately 5-10X Faster Than Bolting
- Cure Entire Assembly

Add Skins to Wrapped Tools and Put on Caul Plates Top, Bottom and Sides

RESULTS OF TESTING

Cellular Box

- Muliple tests conducted with 30mm HEI Threat
- Tests conducted with Box Full of Water and with 60%-full decoupled
- Demonstrated Controlled Damage to the impacted and adjacent bays
- Damage dominated by skin failure
- Pressure transmitted through adjacent bays can be significantly reduced through decoupling
- Decoupling allows reflected fluid momentum to vent

DESIGN FOR DEEP-SECTION WING STRUCTURE

- WINGBOX DESIGNEDTO ALLOW SIMPLIFIED ASSEMBLY
- COMPONENT FABRICATION DEMONSTRATES INNOVATIVE LOW COST PROCESSES
 - 50% COST REDUCTION
 - STRONGER, MORE DAMAGE TOLERANT
 - SAME WEIGHT

- TAPE LAYED SKINS WITHINTEGRAL PULTRUDED -ROD REINFORCED HAT STIFFENERS
- ENABLE IMPROVED LOAD PATH MANAGEMENT

INTERLOCKED BONDED RIBS REACT PULLOFF LOADS IN SHEAR

DEEP SECTION TEST RESULTS

FIVE STIFFENER - TWO RIB TEST PANEL RESULTS

- BONDED CONSTRUCTION <u>IS</u> SURVIVABLE
- FASTENER REDUCTION REDUCES COST <u>DOES NOT</u> INCREASE VULNERABILITY
- COMBINATION OF PULTRUDED RODS
 AND SOFT SKINS CONTAINS
 DAMAGE LOAD PATHS LARGELY
 MAINTAINED

23 mm API EXIT DAMAGE

SIMULATED FUEL

HIT ON ROD REINFORCED STIFFENER

LESSONS LEARNED Keys to Affordable Composite Structure

- Elastic joint behavior, avoid stiff joints like sinewave spars
- Strong joint/weak skin
- Wide spar caps
- Fibers wrap continuous around fuel bay
- Z-Pinned substructure/skin attachment prevents peel
- Provide weak point in skin at desired failure location
- Interlocked bonded structure
- Design structural layout with fuel management for hydraulic ram protection in mind
- Manage loads around damage zones

SURVIVABLE UNITIZED DESIGN COST SAVINGS POTENTIAL

- Designing for Survivability can offer significant cost savings
 - F-22 Wing Set Weight Delta Due to Hydram = +120 lbs 120 lbs x
 \$1000/lb Lifecycle Cost = \$120,000
 - F-22 Wing Set Cost Delta Due to Hydram = \$220,000
 - Cell Design Eliminates 8,000 Wing Fasteners; 8,000 x \$50/
 Fastener = \$400,000
- Total Savings \$120K + \$220K + \$400K = \$740K/Aircraft
- Production of 3000 aircraft; $3000 \times 740 \text{K} = \2.22 Billion

CONCLUSIONS

- Conventional designs are not more affordable than "allcomposite" design approaches
- Survivability must be traded upfront as a structural requirement in the conceptual/preliminary design stage of development (knowledge gained through early "build & bust")
- Composites provide the designer with strength/stiffness management freedom to control failure characteristics
- Designs must be demonstrated to accommodate multidisciplinary requirements
 - Emerging structural design concepts (e.g. stitching, zpinning, interlocked bonding, textiles)
 - Advanced manufacturing(e.g. ebeam, RTM, material placement)
 - Subsystems integration